The goal of PVdagger is to support the visualization and sharing of causal assumptions in pharmacovigilance, using Directed Acyclic Graphs.
Installation
You can install the development version of PVdagger from GitHub with:
# install.packages("pak")
pak::pak("PVverse/pv_dagger")
Example
This is how to draw the causal inquiry, together with the two possible scenarios.
library(PVdagger)
#> Loading required package: DiagrammeR
create_dag("D","E", scenario ="inquiry")
create_dag("D", "E", scenario = "causal")
create_dag("D", "E", scenario = "non-causal")
This is how to draw confounders and colliders
create_dag("D", "E", label_inquiry = "", scenario = "non-causal",
confounder_path = list(nodes = c("C"), signs = c("",""),
label=""))
create_dag("D", "E", label_inquiry = "", scenario = "non-causal",
collider_path = list(nodes = c("F"), signs = c("",""),
label=""))
This is how to add measurements and draw ascertainment bias
create_dag("D", "E", scenario = "inquiry", add_measurements = TRUE,
label_inquiry ="")
create_dag("D", "E", scenario = "non-causal", add_measurements = TRUE,
ascertainment_drug = "",
label_inquiry ="")
create_dag("D", "E", scenario = "non-causal", add_measurements = TRUE,
ascertainment_event = "",
label_inquiry ="")
This is how to add reporting
create_dag("D", "E", scenario = "inquiry", add_measurements = TRUE, add_reporting = TRUE,
label_inquiry ="")
This is how to add reporting biases
create_dag("D", "E", scenario = "non-causal",notoriety_bias = "Notoriety", add_measurements = TRUE,
label_inquiry ="Causal Inquiry",drug_competition_bias = "D2",
event_competition_bias="E2",
background_dilution = list(drug="D3",event="E3"))
